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a b s t r a c t

In the past few decades, the study on how to apply genetic algorithms to problems in the industrial
engineering world has aroused a great deal of curiosity of many researchers in the area of management
science, industrial operations and engineering systems. This paper shows an experimental process of
thermophysical properties estimation of fouling deposited on internal surface of a heat exchanger tube
using genetic algorithms. In brief, the deposits on heat exchanger tubes are caused by the presence of
inorganic salts, of small quantities of organic materials and products of corrosion in the water. From
thermophysical point of view, the deposited fouling has harmful effects on the heat exchanger efficiency.
For these reasons the determination of its thermophysical properties became very important.

The experimental bench using a photothermal method with a finite width pulse heat excitation is
used. The genetic algorithm is used to minimize an objective function containing a calculated and
a measured temperature. This last is measured on the rear face of a bi-layer system composed of a section
of a heat exchanger and the fouling deposited on during and after a finite width pulse heat excitation on
its front face. The calculated temperature, that is a function of the unknown thermophysical properties of
the bi-layer system, is calculated by the resolution of the one-dimensional linear inverse conduction
problem, and by the use of the thermal quadrupoles formalism. The motivation in using genetic algo-
rithms was their potential to overcome the restriction to the estimation of non-correlated parameters of
gradient-based methods, and their powerful ability to work well for many complex problems which are
very difficult to solve by conventional techniques. The results of the estimation procedure show on the
one hand the efficiency and the stability of the developed genetic algorithm to estimate the thermo-
physical properties of fouling and the high accuracy of the obtained results on the other hand.

� 2010 Elsevier Masson SAS. All rights reserved.
1. Introduction

The knowledge and the accurate estimation of thermophysical
properties such as thermal diffusivity, conductivity, effusivity and
heat capacity of materials are more and more important in
industrial processes and quality. In this paper, we are interested to
the identification of thermophysical properties of fouling depos-
ited onto internal surface of heat exchanger. Fouling is a general
term that includes any kind of deposit of extraneous material that
appears upon the heat transfer surface during the lifetime of the
heat exchanger. It reduces the cross sectional area for heat to be
transferred and causes an increase in the resistance to heat transfer
across the heat exchanger. This is because the thermal conductivity
son SAS. All rights reserved.
of the fouling layer is low. This reduces the efficiency of the heat
exchanger. So many researches have been done in the past years.
Researches on the heat exchanger fouling are progressing along
three directions, that is, fouling prediction, fouling monitoring and
fouling countermeasure [1]. And some investigation demonstrated
that the fouling has been a major barrier to the wide application of
enhanced surfaces, so there is an urgent need to determine its
properties that affect the performance of heat exchange surfaces.
To determine these properties there are different researchmethods
based on inverse analysis. During the last decades, several
approaches have been suggested in the solution of the inverse
parameter estimation problems. These approaches include the
minimization of the residual of an objective function that expresses
the sum-square of the error between a measured data and
a calculated one by performing a mathematical model.

In practice, these research methods can be classified into two
categories which are analytical research methods and heuristic
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Fig. 1. Fouling deposited onto the internal surface of a heat exchanger.

Nomenclature

a Thermal diffusivity (m2 s�1)
Cp Heat capacity (J kg�1 K-1)
e sample thickness (m)
h Heat transfer coefficient (W m�2 K�1)
P Initial population
p Laplace parameter (s�1)
Q(t) Crenel excitation (W m�2)
Rc thermal contact resistance (W�1 K m2)
r Correlation matrix
T1 Calculated temperature on the front face (K)
T2 Calculated temperature on the rear face (K)
T2(t,b) Reduced temperature
Tmeasured Measured temperature (K)

tc Heating time (s)
Xij Sensibility matrix
Zb Reduced sensibility matrix

Greek letters
b Vector of estimated parameters
qf Laplace temperature on the front face of the sample

(K s�1)
qr Laplace temperature on the rear face of the sample

(K s�1)
l Thermal conductivity (W m�1 K�1)
r Density (kg m�3)
sn standard deviation of the measurement errors (K)
J Heat flux density (W m�2)
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research methods. The first class is a guided algorithm based on
gradient method that has to evaluate the derivatives of an objective
function to identify the unknown parameters. In the literature, lots
of researchers have used this kind of method to identify thermo-
physical properties of materials. Among them, we mention Cheheb
et al. [2] who have identified thermal radiative and conductive
properties of semitransparent materials using a photothermal
crenel method, Faugeroux et al. [3] and Mzali et al. [4] theoretically
have used the flash method to estimate thermal properties of
samples which are assumed to be opaque and homogeneous and
Albouchi et al. [5] have used the photothermal crenel technique to
determine the effective thermophysical properties of a glass
powder. These types of algorithms guarantee to find the optimal
solution if it exists. However, they only guarantee to find a local
optimal solution and not the global one [6]. Besides, when used
with mathematical models that contain correlated or nearly
correlated parameters, these methods can show instabilities
resulting in non-convergence. Indeed, correlation or near-correla-
tion among parameters is known to be a limiting factor for the
converged application of gradient-based estimation procedures.
Thus, application of gradient-based procedures for the simulta-
neous identification of the unknown parameters is therefore
restricted to the identification of the uncorrelated parameters
assuming the others to beknown [7]. In addition, in some cases,
when we do not have an order of magnitude of the researched
parameters, gradient methods become incapable to estimate them.
For these reasons, we investigate the feasibility of using heuristic
methods which are global search methods and powerful mean to
handle correlation problems and to estimate parameters which are
knownwith less accuracy, andwhose operations do not require any
knowledge of derivatives of the objective function. Themost widely
used heuristic algorithm is the genetic algorithm which is a prob-
abilistic search technique that has its roots in the principles of
genetics. In the GA, the solution is obtained with a random search
process based on survival of the fittest concepts [8]. In this work,
a genetic algorithm is developed and used to identify thermo-
physical properties of fouling deposited onto the internal surface of
a heat exchanger. The identification procedure is based on the
minimization of the residual between a measured temperature and
a calculated one. The system under investigation, a bi-layer sample
composed of a section of a heat exchanger with fouling deposited
on, is submitted to a finite width heat flux excitation using a pho-
tothermal method. The temperature response, during and after
irradiation, is measured at the opposite face using a thermocouple.
Results show the efficiency of the developed genetic algorithm to
estimate all unknown thermophysical parameters of fouling
without requiring information on their initial values.
2. System description

Fouling of heat transfer surfaces is a serious problem that affects
the design and efficiency of heat exchangers, and stills one of the
unresolved problems in thermal science. Fouling is generally
defined as the accumulation of unwanted materials onto the heat
transfer surface during the lifetime of the heat exchanger that may
undergo a decline in its ability to transfer heat. In fact, the addi-
tional fouling layer has a low thermal conductivity that increases
the resistance to heat transfer and reduces the performance of heat
exchangers. Fig. 1 shows a deposited fouling upon the internal
surface of a heat exchanger:

To determine the thermophysical properties of the fouling
added layer of thickness e1, a section of a heat exchanger with
fouling deposited on is studied (Fig. 2).

The system under investigation, composed of two layers of
copper and the fouling deposited on of thickness e2 and e1
respectively, is subjected at t¼ 0 s on its upper face to a finite width
pulse heat flux Q(t) during a short time tc as shown in Fig. 3. The
sample is initially assumed at uniform temperature Ti. The
expression of the heat flux excitation is given by the following
equation:

QðtÞ ¼
�
J 0 � t � tc
0 t > tc

(1)

The heat transfer on the two faces with the surrounding environ-
ment is taken into account and it is represented by two heat
transfer coefficients h1 and h2.

In the one-dimensional experimental design shown in Fig. 4, the
sides of the sample were insulated while an imposed heat flux was
applied across the entire top surface.



Fig. 2. System under investigation.

Fig. 4. One-dimensional boundary condition.
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3. Mathematical model

The model assumes one-dimensional heat flux through a two-
layer sample constituted by two materials of thickness e1 and e2.
Their interface is characterized by an imperfect contact (thermal
contact resistance Rc). The thermal properties and densities of both
layers are assumed to be uniform and constant. The convective and
radiative heat transfers on the two faces with the uniform envi-
ronment are expressed by two heat transfer coefficients h1 and h2
[5]. The transient temperature distribution in the sample can be
obtained by solving the one-dimensional heat equation for each
layer:

li
v2Tiðx; tÞ

vx2
¼ riCpi

vTiðx; tÞ
vt

; i ¼ 1;2 (2)

where Ti is the temperature of layer i. Coupled to initial and
boundary conditions:

Ti ¼ 0 at t ¼ 0 s (3)

�l1
vT1ð�e1; tÞ

vx
¼ QðtÞ � h1T1ð�e1; tÞ at x ¼ �e1 (4)

�l1
vT1ð0; tÞ

vx
¼ 1

Rc
ðT1ð0; tÞ � T2ð0; tÞÞ at x ¼ 0 (5)
Fig. 3. Principle of the finite width pulse heat flux method.
l1
vT1ð0; tÞ

vx
¼ l2

vT2ð0; tÞ
vx

at x ¼ 0 (6)

l2
vT2ðe2; tÞ

vx
¼ �h2T2ðe2; tÞ at x ¼ e2 (7)

To solve the system of equations (2)e(7), the thermal quadrupoles
formalism is used. The entire system can be described in Laplace
space as:"

qf
jð1�expð�ptcÞÞ

p

#
¼
�
1 0
h1 1

��
A1 B1
C1 D1

��
1 Rc
0 1

��
A2 B2
C2 D2

��
1 0
h2 1

��
qr

0

�

¼
�
A B
C D

��
qr

0

�
ð8Þ

Here qf and qr are the Laplace transforms of the front and rear face
temperatures of the sample, respectively. The coefficients Ai, Bi, Ci
andDi depend on the Laplace parameter p, on the thickness ei of the
layer i, and on the thermophysical properties of the material. Their
expressions are given by the following equations:

Ai ¼ Di ¼ coshðaieiÞ; Ci ¼ liai sinhðaieiÞ;

Bi ¼
1

liai
sinhðaieiÞ; ai ¼

ffiffiffiffi
p
ai

r
(9)

In the Laplace space, the rear face temperature is given by:

qrðpÞ ¼ J

pC
½1� expð�ptcÞ� (10)

where J is the density of the crenel heating flux (Fig. 3).
With dimensional parameters, the rear face temperature, qr(p),

is a function of several dimensional parameters given by the
following expression:

qrðpÞ ¼ f
�
p; tc; a1; l1; r1;Cp1; e1; h1; a2; l2; r2;Cp2; e2;h2;Rc;j

�
(11)

Due to the large number of parameters encountered in the math-
ematical model, this study is presented in dimensionless space
with dimensionless parameters. The rear face temperature in
Laplace space for a crenel heating excitation is given by:

qr ¼ b4

b21s
2
1

�
1� exp

��s21t
*
c
��

ðdþ 4þ f1 þ f2Þ
(12)

where

d¼
h
s1$chðs2Þshðs1Þþb5$b6$s

2
1$shðs2Þshðs1Þþb6$s1$chðs1Þshðs2Þ

i
(13)

4 ¼ b2b3

�
1

b6s1
chðs1Þshðs2Þ þ b5$chðs1Þchðs2Þ þ

1
s1
shðs1Þchðs2Þ

�
(14)
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f1 ¼ b2½chðs1Þchðs2Þ þ b5b6s1$chðs1Þshðs2Þ þ b6shðs1Þshðs2Þ�
(15)

f2 ¼ b3

�
chðs1Þchðs2Þ þ b5s1$chðs2Þshðs1Þ þ

1
b6

shðs1Þshðs2Þ
�
(16)

The dimensionless parameters are defined by:

s1 ¼
ffiffiffiffiffi
p
b1

r
; b1 ¼ a1

e21
; s2 ¼

ffiffiffiffiffi
p
a2

r
e2; t

*
c ¼ b1tc; b2 ¼ h1e1

l1
;

b3 ¼ h2e2
l2

; b4 ¼ j

r1Cp1e1
; b5 ¼ Rcl1

e1
; b6 ¼

 
l2r2Cp2
l1r1Cp1

!1=2

(17)

The variation of the reduced temperature T2*(t,b) with time in
the usual space domain is calculated using the numerical algorithm
proposed by GravereStehfest of qr [5]:

T*2ðt;bÞ ¼ Lnð2Þ
t

Xn
i¼1

Viqr

�
iLnð2Þ

t

	
(18)

where Vi are the GravereStehfest's coefficients function, and
b¼ [b1, b2, b3, b4, b5, b6] is the vector of the unknown parameters to
be estimated using an inverse problem based on genetic algorithm.
The identification procedure of all parameters bi allows us to
calculate the unknown thermophysical properties of the first layer
of fouling which are the thermal diffusivity a1, the thermal
conductivity l1, the volumetric heat capacity (r1Cp1), the global heat
transfer coefficients (h1 and h2), and the contact resistance Rc
between the fouling and the copper.
Table 1
Correlation matrix.

r(bi, b1) r(bi, b2) r(bi, b3) r(bi, b4) r(bi, b5) r(bi, b6)

r(b1, bj) 1 �0.95 �0.96 0.7 �0.58 �0.41
r(b2, bj) 1 0.99 �0.69 0.79 0.91
r(b3, bj) 1 �0.65 0.75 0.908
r(b4, bj) 1 �0.93 �0.98
r(b5, bj) 1 0.97
r(b6, bj) 1
4. Sensitivity study

The aim of performing a sensitivity study before starting any
estimation procedure is to evaluate the possibility to simulta-
neously estimate all unknown parameters. This depends on both
magnitude of the parameters sensitivity coefficients and the
correlation among the parameters. A sensitivity coefficient, Xij, is
defined as the effect that a change in a particular parameter b has
on the variable state. The larger Xb, the more sensitive Tcrenel(t,b) is
to b and the easier the estimation of this parameter. Mathemati-
cally, the sensitivity coefficients are defined as the first derivative of
the measured variable with respect to the parameters of the model:

Xb ¼ vTcrenelðt; bÞ
vb






bjsb

(19)

where b ¼ [b1, b2, b3, b4, b5, b6] and bj are all parameters other than
b that remain constant.

When performing a sensitivity study, it is meaningful to
examine the reduced sensitivity Zbj which are obtained by multi-
plying the original coefficients by the parameter referred to [9].
These coefficients have the same unit as the state variable
(temperature). Using the finite difference approximation, reduced
sensitivity coefficients are written as:

Zbj ¼ bjXij ¼ bj
Ticrenel

�
t; bj þ db

�� Ticrenel
�
t;bj

�
dbj

(20)

where db ¼ (0,.,0, dbj,.,0) is a small variation of the parameter bj.
In general, these sensitivity coefficients must be large. The

simultaneous identification of many parameters using a based
gradient method is possible only if different Zbj are uncorrelated in
the course of time. The degree of correlation among all parameters
is obtained by computing the off-diagonal elements of the corre-
lation matrix:

r
�
bi;bj

� ¼ cov
�
bi; bj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðbiÞvar

�
bj
�q (21)

where the varianceecovariance matrix (cov (bj, bi)) is given by the
following equation:

cov
�
bi;bj

�¼ �XTX
��1

s2n

¼ s2n

2
664

varðb1Þ covðb1;b2Þ $ covðb1;b6Þ
covðb2;b1Þ $ $ $

$ $ $ $
covðb6;b1Þ $ covðb6;b5Þ varðb6Þ

3
775

(22)

We notice that the varianceecovariance matrix is related to the
standard deviation of the errorsmeasurement that is assumed to be
uncorrelated, additive, normally distributed with zero mean and
constant standard deviation sn equal to 9.3 � 10�3 K.

The correlation matrix is a bridge over which we measure the
degree of interrelationship among two parameters which tells us
whether if they vary together perfectly, near perfectly, or there is no
correlation between them. It provides a way of an easily compar-
ison of correlation factors and a determination of clusters of
parameters that co-vary. The estimated parameters can be
considered correlated when the correlation coefficients are near
from the unity [10], and uncorrelatedwhen they are near from zero.
The correlation matrix corresponding to the six preceding param-
eters is given in Table 1. To be compared, the table is calculated from
the reduced sensitivities. Since the correlation r(bi, bj) between bi
and bj is the same as r(bj, bi) between bj and bi, only the top
triangular portion of the matrix is given. The diagonal terms are
equal to the unity because each parameter is completely correlated
with itself and the off-diagonal terms are between �1 and 1.

From the correlation matrix and according to Figs. 5(a), (b)
and 6, one notes primarily that b1 is correlated to b2 and b3 espe-
cially for long times (t> 90 s) when the sensitivity coefficients of b1,
b2 and b3 are linearly dependent. Secondarily we remark from
Figs. 5(c) and 6 that in most cases b2 and b3 are linearly, positively
and perfectly correlated. This remark can be emphasized by the
value of the correlation coefficient between b2 and b3 which is near
from the unity. Thirdly, Fig. 5(d) and (e) show that b2 and b3 are
correlated to b6. In fact, the correlation coefficients r(b2, b6) and r
(b3, b6) are higher than 0.908 and according to Fig. 6 for t > 45 s the
reduced sensitivity coefficients have the same shape. Fourthly, on
the one hand, it can be seen from the correlation matrix, Figs. 5(f),
(g) and 6 a good correlation in the earliest time between b4 and b5
and between b4 and b6 on the other hand. Fifthly, Fig. 6 shows that
the reduced sensitivity coefficients of b5 and b6 have the same
forms and their maxima are reached almost at the same time.
Besides Fig. 5(h) shows that these two parameters are strongly
correlated. Finally, we have to mention that the other coefficients
correlation r(bi, bj) measure a significant interrelationship between
the different parameters which are in most cases higher than 0.41.



Fig. 5. Linear dependence between the dimensionless sensitivity coefficients of: Zb1 and Zb2: 5(a), Zb1 and Zb3: 5(b), Zb2 and Zb3: 5(c), Zb2 and Zb6: 5(d), Zb3 and Zb6: 5(e), Zb4 and Zb5:
5(f), Zb4 and Zb6: 5(g), Zb5and Zb6: 5(h).
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Fig. 6. The variation of reduced sensitivity coefficients of the reduced model.
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The sensitivity study has shown that more than two parameters
are correlated and some other parameters are nearly correlated.
Therefore, the use of a traditional method like gradient methods or
analytical methods to estimate thermophysical properties of the
deposited fouling becomes very difficult. In fact, these methods are
incapable to estimate correlated or nearly correlated parameters
simultaneously and they need to define a rapport between them to
be estimated. For these reasons we have adopted a heuristic search
based on genetic algorithms to estimate thermophysical properties
of the deposited fouling.

5. Parameters estimation: use of genetic algorithm

The basic idea of the inverse problem considered in this study is
regarded as a parameter estimation problem. It is about deter-
mining the vector of parameters b that minimizes a fitness function
S(b) that corresponds to the gap between the measured tempera-
ture Tmeasured and the mathematical model output T2*(t,b), and to
improve estimated parameters until the mathematical model
output is sufficiently close to the measurements as written in the
following equation:

minðSðbÞÞ ¼
XN
i¼1

�
Tmeasured � T*

2ðt; bÞ
�2

(23)

To minimize this fitness function there are many methods, among
them we mention the gradient methods which are largely used by
many researchers in different domains. Although these techniques
are well developed, they maintain significant drawbacks. Their
principle requires the evaluation of the derivatives of the fitness
function S(b) by differentiating equation (23) with respect to each
of the unknown parameters bj (j ¼ 1,.,6) and then setting the
resulting expression equal to zero yielding to the following set of
algebraic equation:

Xn
i¼1

2*
vTcrenelðt; bÞ

vbj
½Tcrenelðt; bÞ � Tmeasured� ¼ 0 (24)

From their principle, we note that gradient methods can be appli-
cable only for derivable functions. Furthermore, employing gradient
search methods mechanism need to start from an initial guessed
solution near to the exact solution. In these approaches, the use of
a bad starting point may result in the solution getting trapped in
a local optimum [8]. Therefore, in the solution of the inverse
problems, heuristic algorithms are usually preferred due their
ability of finding global or near global optimum solutions without
the necessity of working with gradients, as well as requiring infor-
mation on an initial solution. The most widely used heuristic algo-
rithm is genetic algorithm which is implemented in this study to
search for optimal values of the vector b composed of six parameters
[b1, b2, b3, b4, b5, b6], called chromosomes or individuals, and they
represent the unknown parameters of the model T*

2ðt; bÞ. In the
genetic algorithm, the solution is obtained with a random search
process based on the principles of natural selection and survival of
the fittest from natural evolution which were first described by
Darwin. Genetic algorithm in particular became popular through
the work of John Holland in the early 1970s, and particularly his
book “Adaptation in Natural and Artificial Systems” (1975). Genetic
algorithm is categorized as global search heuristics [11,12].

Genetic algorithm is implemented as a computer simulation in
which a population of abstract representations (called chromo-
somes) of candidate solutions (called individuals) to an optimiza-
tion problem evolves toward better solutions. Mathematically, the
population is a matrix of p parameters and n individuals satisfying
boundary and system constraints.

Population ¼ P ¼

2
666664

b11 b12 b13 . b1p

b21 b22 $ . b2p
$ $ $ . $
$ $ bj3 . $

bn1 bn2 bn3 . bnp

3
777775 ¼

2
66664
b1

b2

$
$
bn

3
77775 (25)

Each row in the population is called an individual representing
a solution to the problem at hand. Traditionally, solutions are
represented in binary as strings of zero and one, but integers and
floating point numbers can also be used. Optimal parameters are
obtained by exchanging genetic information between individuals
to reproduce improved solutions from one generation to the next
by four genetic operators, which are evaluation, selection, crossover
and mutation as shown in the following flowchart (Fig. 7).

The evolution usually starts from a population of randomly
generated individuals and happens in generations. In each gener-
ation, every chromosome is evaluated by measuring its fitness
function S(b) in the population and assigning to it a score. Based
upon their fitness, multiple individuals are stochastically selected
from the current population to form a new population of n=2
individuals. To create the next generation, new individuals, called
offspring, are formed by eithermerging two chromosomes from the
current generation using a crossover operator or modifying
a chromosome using a mutation operator. The crossover operator
takes two selected individuals and combines them about a cross-
over point thereby creating two new individuals. The mutation
operator randomly modifies the genes ðbjiÞ of a chromosome,
introducing further randomness into the population. The cycle
restarts by the formulation of a new generation by selection,
according to the fitness values, some of the best parents and
offspring are kept, the others are rejected to keep the population
size constant. The algorithm terminates when either a maximum
number of generations has been produced, or a satisfactory fitness
level has been reached.
5.1. Selection

According to Darwin's evolution theory, the selection is the
operator that select best individuals (chromosome) according to
their fitness function S(b) to survive and create new children. The
selection of the parents can occur in many ways, but all selection
methods have the same objective of preserving good individuals



Fig. 9. Situation after ranking (graph of order numbers).

Create initial random population

Evaluate fitness of each individual
in the population

Select individuals : based on fitness 

Application of Crossover and 
mutation operators 

Criterion 
satisfied 

Yes

No

Fig. 7. Genetic algorithm flowchart.
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and discarding the less fit ones. There are a number of different
selection methods, such as roulette wheel selection, rank selection,
elitism selection, etc. The roulette selection is one of the traditional
selection techniques. The commonly used reproduction operator is
the proportionate reproductive operator where a string is selected
from the mating pool with a probability proportional to the fitness
[13]. The principle of roulette selection is a linear search through
a roulette wheel with the slots in the wheel weighted in proportion
to the individual's fitness values like in the following figure.

The better the chromosomes are, the more chances to be
selected they have. The previous selection will have a problem
when the fitness values differ very much. As shown in Fig. 8 where
chromosome 2 has a fitness higher than 63%, so its circumference
occupies 63% of the roulette wheel, and then other chromosomes
have too few chances to be selected. For this disadvantage the rank
selection is used. It ranks the population and every chromosome
receives fitness from the ranking as described in the following
principle: the worst chromosome has fitness 1, the second worst
fitness 2 and the best has fitness n (number of chromosomes in the
population). It results in slow convergence but prevents too quick
Fig. 8. Principle of the roulette wheel selection (graph of fitnesses).
convergence. It also keeps up selection pressure when the fitness
variance is low. It preserves diversity and hence leads to
a successful search. We can see in Fig. 9, how the situation changes
after changing fitness to order number.

After ranking, all the chromosomes have a chance to be selected.
But this method can lead to slower convergence, because the best
chromosomes do not differ so much from other ones. In these
approaches, we used an elitist selection. Elitism preserves the best
chromosomes in the next generation, and the rest are removed.
This ensures that the chromosomes of the most highly fit member
of the population are passed on to the next generation without
being altered by genetic operators. Using elitism ensures that the
maximum fitness of the population can never be kept from one
generation to the next. Elitism usually brings about a fast conver-
gence of the population [14]. In some cases, elitism improves the
chances of trapping in a local optimum, while in others it reduces it
[14], besides chromosomes with bed fitness might contain some
genes (parameters) that can lead to a more rapid convergence. For
this reason, we used in this work an elitist selection based on the
following principle: eighty percent of the new population is chosen
from the best chromosomes that have the minimum fitness, and
the other twenty percent is chosen from the chromosomes that
have the maximum fitness of the old population. This ensures that
selective operator maintains the genetic diversity and reduces the
chance to be trapped in a local optimum.

5.2. Crossover

Taking a cue from nature, genetic algorithms do not use muta-
tion very often. The primary mechanism in genetic algorithms to
create new individuals is crossover. In its simplest form, crossover
randomly chooses two individuals from the pool that were selected
to be parents, and exchanges segments of their two chromosomes
around a chosen point as shown in Fig. 10.

The result of the crossover is two new individuals, each with
a segment of chromosome from each parent. There are several
types of crossovers, including single-point crossover, multi-point
Fig. 10. Principle of the crossover operator.



Fig. 11. Experimental device.
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crossover, and uniform crossover [15]. In this work, we applied
a three-point crossover as shown in Fig. 10. Child 1 and child 2 are
different from parent 1 and parent 2, but save some character of
parents.

5.3. Mutation

Finally, to satisfy the diversity of the population every individual
is subject to a random change in the population by using amutation
operator. In contrast to crossover operators, mutation operators
focus more on local search because they can only modify properties
of individuals but cannot recombine properties from deferent
parents.

6. Experimental setup and results

The experimental apparatus is schematically shown in Fig. 11. It
involves a stabilized power, a heat source, a sample to be charac-
terized, a thermocouple, a data acquisition system and a computer.
The investigated sample, composed of two layers, is a section of
a heat exchanger with fouling deposited on. The first layer of
fouling has a thickness e1 of 0.5 mm; the second layer is the copper
of the heat exchanger of thickness e2 equal to 1 mm. In order to be
put under the conditions of the one-dimensional heat transfer, the
sample's sides were insulated (Fig. 4) while an imposed heat flux
with a finite width was applied across the entire top surface using
Fig. 12. Comparison between measured temperature and calculated temperature for
the initial population.
a halogen lamp, which provides a uniform heat flux equal to
1 kw m�2, during 15 s.

The thermal characterization consists in analyzing the temper-
ature evolutionmeasured by a K-type thermocouple, located on the
central rear face of the sample, immediately after the absorption of
the heat flux density delivered by the halogen lamp. The
measurement is performed for 250 s, and the sampling interval is
set as 0.25 s throughout the entire temperature recording. After the
thermal excitation, the temperature reaches a maximum and then
decreases due to the heat diffusion. The electrical signal, being
proportional to the temperature variation Tmeasured, and depending
on the various thermophysical properties to be identified is read
and recorded with a data acquisition unit (Agilent 34970 A) which
allows transferring data to a computer via an RS-232 interface.

In this parameters' estimation, the thermophysical parameters
of the second layer of copper are fixed. Its thermal diffusivity a2 and
thermal effusivity

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2r2Cp2

q
are fixed at known values of

1.16 � 104 m2 s�1 and 37.039 kw m�2 k�1 s�1/2, respectively. The
estimation was carried on with a genetic algorithm with a pop-
ulation of 100 chromosomes, each one of six genes (six parame-
ters), and in 200 generation steps with the same procedure. The
initial population is generated in a large domain. Each parameter bi
is delimited by an upper and a low bound, that is b1 ˛ [0, 200 s�1],
b2 ˛ [0, 1], b3 ˛ [0, 1], b4 ˛ [0, 50], b5 ˛ [0, 10], b5 ˛ [1, 100].

Fig. 12 shows a comparison betweenmeasured temperature and
the calculated one using six chromosomes of the initial population.
Fig. 13. Comparison between the measured and the calculated temperature at the
tenth generation.



Fig. 14. Evolution, along the successive generations (left), of parameter bi and the best so-far parameter (right): (a) b1, (b) b2, (c) b3, (d) b4, (e) b5, (f) b6.
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Fig. 14. (continued).
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Table 2
Estimated parameters.

Parameters b1 b2 b3 b4 b5 b6

Estimated values 6.09 3.19 � 10�03 2.98 � 10�03 1.24 0.45 18.6
Standard deviation sbi 0.11 1.36 � 10�4 6.36 � 10�5 1.63 � 10�2 1.86 � 10�2 0.32
Relative uncertainty % 1.19 4.28 2.13 1.31 4.17 1.70

Table 3
Calculated dimensional parameters.

Parameters a1 (m2 s�1) r1Cp1 (kJ/m3 K) l1 (W m�1 K�1) h1 (W m�2 K�1) h2 (W m�2 K�1) Rc (W m�2 K�1)

Values 0.97 � 10�6 2010 1.96 15.7 14.6 9.12 � 10�5

Relative uncertainty % 3.88 3.31 7.20 12.47 10.33 12.36

Fig. 15. Comparison between measured and calculated temperature at the conver-
gence of the GA.
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According to this figure, we notice that these initial chromosomes
are not potential solutions but the importance is that theymust just
provide an answer until this stage, even bad.

After the creation of the initial population, chromosomes are
evaluated and the best are selected according to their fitness by the
use of an elitist selection as described above, then the three-point
crossover and the uniform mutation are applied. Since these four
genetic operators have been applied, we plotted in Fig. 13 the
response of the calculated temperature using the six best individ-
uals at the tenth generation. We notice that, along the evolution
generation, the responses of the mathematical model have the
tendency to come closer of the experimental response.

This iterative process (evaluation, selection, crossover and
mutation) continues until one of the following possible termination
criteria is met: if a known optimal or acceptable solution level is
attained; or when the fitness for the best so-far chromosome does
not change significantly from iteration to iteration; or if
a maximum number of generations have been performed. When
the last condition is chosen, genetic algorithms are typically iter-
ated for anywhere from 10 to 500 or more iterations [7]. In this
work, the stop criterion is met when the fitness S(b) of the best
chromosome is lower then 10�3 K2 and the algorithm achieves 200
generations. Fig. 14 illustrates the different parameters evolution
from the initial to the final generation and stresses the efficiency of
the genetic algorithm. This figure shows that the convergence is
reached at the generation number eighty five.

The performance of the genetic algorithm was performed by
averaging five runs with different initial populations; the genetic
algorithm converges to the average parameters given in Table 2.

The results shown in Table 2 clearly indicate that the genetic
algorithm allows the simultaneous estimation of highly correlated
parameters. As onewould expect, the estimation procedure is more
accurate as the sensitivity coefficients are high, as outlined in Fig. 6.
These results confirm the sensitivity study.

Using the definition given in equation (17), the unknown ther-
mophysical properties of the fouling and the global heat transfer
coefficients can be easily calculated. These parameters are the
thermal diffusivity (a1), the thermal conductivity (l1), the volu-
metric heat capacity (r1Cp1), the heat transfer coefficients h1 and h2
on the front face and the on rear face of the sample, and the contact
resistance Rc; their values are given in Table 3.

The relative uncertainties on calculated parameters are obtained
using the following expressions:

Da1
a1

¼ Db1
b1

þ 2
De1
e1

Dr1Cp1
r1Cp1

¼ Db3
b3

þ DJ
J

þ De1
e1

Dl
l

¼ Da1
a1

þ Dr1Cp1
r1Cp1
Dh
h

¼ Db2
b

þ Dl
l

þ De1
e
2 1

DRc
Rc

¼ Db4
b4

þ Dl
l

þ De1
e1

The thickness of the deposited fouling and the heat flux density
are known with an accuracy of 1%. One can easily observe from
these results (Table 3) that the genetic algorithm succeeds in
identifying the correlated thermophysical properties of fouling
with reasonable errors. The quality of the estimation is analyzed, by
comparing the experimental response and the calculated temper-
ature using the best chromosomes estimated by the genetic algo-
rithm. Fig. 15 presents comparison between the measurements and
the optimal model using the estimated parameters. This figure
shows a good agreement between the measured and calculated
temperatures.

These results show that the proposed solution algorithm is
effective in the determination of the unknown thermophysical
properties of the fouling accumulated onto the internal surface of
the heat exchanger. It should be emphasized that one of the
advantages of the proposed solution algorithm is that there is no
need to define an initial solution to start the optimization process.

To qualify this evaluation, the residual between measured and
calculated temperatures is represented in Fig. 16. We remark that it
is a centered residual on zero and has a constant standard deviation
equal to 9.75�10�3 K. We can thus consider that these estimations
are completely acceptable.



Fig. 16. Residual between calculated and measured temperatures.
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7. Conclusion

An estimation procedure presented in this paper allows the
estimation of thermophysical properties of fouling deposited onto
internal surface of heat exchanger. This procedure is based on
a stochastic method using genetic algorithm whose chromosomes
code the unknown model parameters. The non-gradient nature of
genetic algorithm has been exploited to handle problems of the
initialization solution and the degree of correlation between
parameters. The estimation method consists in minimizing an
objective function which computes the sum of squared errors
between a measured temperature and a calculated one which is
developed using the quadrupoles formalism. The experimental
results show, on the one hand, the capability of the proposed
estimation approach to identify a large number of unknown
parameters even in presence of a strong correlation between them.
On the other hand, this study allows us to determine the thermal
resistance of the deposited fouling which has a harmful effect on
the thermal efficiency of heat exchanger.
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